

Deep Sequencing of Small RNAs in the F1 Hybrid B73 x Mo17 and its Parents

Wesley T. Barber*, Wei Zhang, Kranthi K. Varala, Hlaing Win, Stephen P. Moose, Matthew E. Hudson

Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, *contact: barber4@illinois.edu

Rationale:

- Allelic diversity and changes in dosage for key regulatory genes are hypothesized to contribute to heterosis in plants.
- The highly repetitive maize genome generates large amounts of allelic diversity and is believed to be responsible for the crop's high manifestation of heterosis.
- Small RNAs (sRNAs) are a new class of regulatory factors that control plant growth and development, function in plant immunity, and maintain the structure of the genome.
- In Arabidopsis and maize, the activities of miRNA156 and miRNA172 control shoot development and maturation. Recently, miRNA396 has been shown to regulate overall leaf size in Arabidopsis through its control of cellular proliferation.
- Changes in the duration or level of expression of key miRNA genes may play a role in the heterosis observed early on in maize hybrid seedlings compared to their parents.

• In Arabidopsis, repeat derived siRNAs have been shown to not only silence repeat elements from which they are derived, but also genes containing pieces of elements remaining from transposition.

- Maize produces an additional abundant class of repeat derived siRNAs, generated through a pathway independent of MEDIATOR OF PARAMUTATION1 (mop1-1), an orthologue of the RNA-DEPENDENT RNA POLYMERASE2 (RDR2) in Arabidopsis.
- In an F1 hybrid, the activity of these repeat derived siRNAs in *trans* could produce novel gene expression that is not present in either parent.

• Are the patterns of sRNA accumulation between inbreds and their hybrids consistent with many of the properties of heterosis defined by previous studies?

Shoot apices correspond to a stage of rapid leaf initiation and cellular Are core s proliferation when heterosis is easily observed, and are expected to be offspring enriched for sRNAs with key regulatory functions for development. A. Deep S A. Tissue Sampled B. Mid-parent and best parent heterosis observed for miR156 Emerged Leaf seedling biomass miR159 Above Ground Dry Weight (g) Genotype Elongation and miR160 0.078 Differentiation Zones miR162 Mo17 0.044 miR164 B73 x Mo17 0.111 81.70% 42.10% 0.157 101% miR166 Mo17 x B73 157% miR167 miR168 miR169 C. Summary Statistics of Small RNA Libraries miR171 Distinct Sequences (Filtered Unfiltere miR172 Genotype Leaf meristem ≥5 reads) miR319 Leaf primordium # Reads # Seqs # Reads miR390 749,105 47,436 8,635,395 475,588 6,132,828 miR393 28,172 Mo₁₇ 8,526,014 1,011,801 57,115 Sampled tissue for B73 x Mo17 miR394 1,073,780 8,539,768 63,059 Mo17 x B73 miR396 31,834,005 107,768 3,310,274 All Libraries | miR528 miR529 miR827

What modes of gene action do different classes of small RNAs exhibit?

quencing	g Experim	ent		<u>B. Additional</u>	Greenhouse Exper	<u>iment</u>	
		B73 x	Mo17 x	Genotype	DAS, stage	Above Gro	ound Biomas
B/3	M01/	W01/	B/3			BPH (%)	MPH (%)
2830	4375	2243	1267 🗲	B73 x Mo17	10 DAS, 3 leaves	8.42	18.32
17	9	37	34	Mo17 x B73	10 DAS, 3 leaves	27.54	39.18
8	5	12	14	B73 x Mo17	18 DAS, 5 leaves	17.91	24.55
2	3	5	2	Mo17 x B73	18 DAS, 5 leaves	57.75	66.63
4	15	10	8	*Inhreds sa	mnled also had 3 or	r 5 leaves em	herged
7359	4716	9188	6577	moreus su		5 ieuves em	icigcu.
162	252	341	310		miR156	mil	R172
3617	4830	6517	7636	³]		ل ــــــــــــــــــــــــــــــــــــ	L
6	17	8	13	 in	breds -	•	•
13	11	15	11	y ^{2.5} h	ybrids		
72	101	148	178 ←				
9	15	12	11	oiffe			
3	4	7	7	e 1.5			
2	3	2	1	ativ			
4	9	14	13		_		
6	8	6	2	0.5			
9	11	18	23				
1	1	1	1				
_	-	-	-	D DIVI IVI			

Tested in two similar experiments; data for

A. Filter criteria based on sequence abundance

107,768 sequences (100% of total reads)

At least 4.6 reads per million (rpm) in: 1) All four libraries (B) 2) 1 parent and both hybrid libraries* (C)

* At most 0.65 rpm in the other parents' library

1,014 sequences (37.4% of totals reads)

B. Filter 1: F1 deviation from mid-parent abundance

one experiment shown at the right.

ices were isolated from four plants grown in the green house. were pooled prior to RNA isolation.

= 0

Included in clustering

Number of perfect matches to B73 genome

Summary:

Normalize

mature mil

• For this cross, the rate of miR156 decay for the hybrids falls between the range of their parents. miR172 expression levels rise earlier in hybrids, suggesting the hybrids become adults slightly earlier than their parents.

• Other potential candidates to test for non-additive expression between the parents and hybrids are miR159, miR167, miR528, and miR827.

distinct

Clustering of sequences to B73 genome

	# clusters ≥5 sequences	avg size of cluster (bp)	avg sum of reads (rpm)	# of cl overlapping w/ WGS GFF	usters overlapping w/ MIPs repeat GFF		
21-nt majority	10	169	402	6	1	÷	A few clusters contain sequences with SNPs
22-nt majority	112	780	71	35	75		between the parents. Example shown
24-nt majority	668	114	16	76	272		below.
					TCA		~ sense
B73: TATGT	GACGGCGCT	ATCCTTACC	GAGCTTTCA			гттсс	CTCTTCGCAGTCTTTGTTTCATCACTCA
B73: ATACA	CTGCCGCGA	TAGGAATGG	CTCGAAAG	FACGTACATG	GTGCGGGAG	GAAAG	GGAGAAGCGTCAGAAACAAAGTAGTGAGT
Mo17: TATG1	GACGGCGC	TATCCTTACC	GAGCTTTC	ATGTACCA	CGTCCTCTT	ттст	CTCCGCAGTCTTTGTTTCATCGCTCA

Mo17: ATACACTGCCGCGATAGGAATGGCTCGAAAGTAC----ATGGTGCAGGAGAAAAGAGAGGCGTCAGAAACAAAGTAGCGAGT

• *cinful* retrotransposons are more active in generating siRNAs B73, whereas *giepum* retrotransposons are more active in Mo17.

• Depending on the genomic structure of each parent, parental differences in ra-siRNAs could lead to novel interactions in *trans* in the hybrid.

Do hybrids have a higher abundance of sRNAs mapping to rDNA?

Genotype mop1-1/?

21-nt siBNA that perfectly mate	h SNPs	between	the	parent	<u>S</u>	
genome and were not cataloged	d in othe Ab	r parent's undance	libra (rpm	ary)		
Signature	B73 I	Mo17 BN	1 N	1B		
TGGGAGGATTGATAGGTGCGA	33	0	13	19	CNDs present in cood	
CGGGAAGATTGATAGGTGCGA	0	51	44	53	SNPS present in seed	
**** *********					sequence.	C. Clu
AGTGATGAAACAAAGACTGCG	15	0	13	12	Divergent regulatory	
AGCGATGAAACAAAGACTGCG	0	75	58	57	functions?	
** ****						
AGAACAGATAGAAAGGTGTGA	5	0	5	6	B73 sequences man	
AGAACGGAGAGAAAGGTGTGA	0	10	8	11	to same cluster	
**** ** ********					to same cluster.	

Summary:

• sRNAs abundantly generated in each parent frequently accumulate to similar levels in the hybrids.

• Repeat associated siRNAs (ra-siRNAs) appear to exhibit large relative differences between the parents and between the parents and the hybrids more frequently than miRNA genes.

Acknowledgements:

We thank the National Science Foundation Plant Genome Research Program and the **University of Illinois Critical Research Initiatives Program** for supporting this project. We also thank other members of the Hudson and Moose Labs for thoughtful discussion.

BINIO.	+	36	725	20.30		52.20%	39.75%	
BMo*	-	22	347	43.55	52.14	118.03%	101.11%	
B73	+	19	519	15.01				Part 1
B73	-	11	173	18.99	66.74			
Mo17	+	25	434	12.05				
Mo17	-	12	146	17.31	66.41			WT (left) and mutant hybrids
*Compare	d to WT. mu	itant drv sto	ver biomass v	vas reduce	ed by 10%			(right) in same row: summer 200
• The per	y. netrance at for be	e of the	mutation	may b	e altered	l in hybri	d, or 24	-nt siRNAs may not be
• The per importar	y. netrance nt for he	e of the terosis.	mutation	may b	e alterec	l in hybri	d, or 24	-nt siRNAs may not be
• The per importar	y. netrance nt for he Vork:	e of the eterosis.	mutation	may b	e alterec	l in hybri	d, or 24	-nt siRNAs may not be
• The per importar Future W • Profilin	y. netrance nt for he Vork: g the ex	e of the eterosis.	mutation	may b	iRNAs du	l in hybri	d, or 24	-nt siRNAs may not be
• The per importar Future W • Profilin	y. netrance nt for he Vork: g the ex	e of the eterosis.	n of other	may b	iRNAs du	l in hybri uring see	d, or 24	-nt siRNAs may not be velopment for BMo.
• The per importar Future V • Profilin • Investig	y. netrance nt for he Vork: g the ex gating pa	e of the eterosis. pression	mutation n of other of small R	may b key m	iRNAs du	d in hybri uring see on in othe	d, or 24 dling de er tissue	-nt siRNAs may not be velopment for BMo. es for BMo, and for

due to

man11

• Confirming observed differences in abundance of ra-siRNAs between B73 and Mo17, and determining if they have any functional significance in an F1 hybrid.

• Confirming observed differences in abundance of siRNAs with SNPs between B73 and Mo17, and determining if they have divergent targets.